投稿

Transparent Electrode Needs Development for Next Generation Display to Surge

Recently, with various research results regarding transparent electrode, interest in next generation transparent electrode is increasing.

 

In early December, UNIST (Ulsan National Institute of Science and Technology) developed printing technology that can arrange the Ag nanowire in the direction chosen on top of substrate. Ag nanowire is transparent electrode that can be applied to large area flexible touch panel and display products. This technology allows the surface to be flat through the fusion of nanotechnology to the existing printing process and increases transmittance.

 

Around the same time, ETRI (Electronics and Telecommunications Research Institute) developed technology that replaces thin metal electrode on top of OLED substrate with graphene transparent electrode. The metal electrode that were being used in OLED was mostly silver (Ag) material, but due to the reflection of internal light, the viewing angle changed depending on the angle. The external light also affected picture quality due to reflection. The newly developed technology used graphene that mostly does not reflect internal/external light as transparent electrode and improved transmittance and picture quality.

 

At present, ITO (indium tin oxide) is most widely used as transparent electrode materials. However, the supply is limited and flexible electronic device application is narrow. As such, the demand for the development of new materials that can replace this is greatly increasing. Particularly, as ITO is not suitable for stretchable device, the next generation transparent electrode development is considered to be a key issue for future display.

 

At 2016 Production/Process Technology Development and Application Cases by Flexible Transparent Electrode and Film Materials Seminar (December 17) held in Seoul, South Korea, Dr. Won Mok Kim of KIST (Korea Institute of Science and Technology) discussed, of many flexible transparent electrodes, TCO (transparent conductive oxide) production and process technology through presentation titled ‘TCO based flexible transparent electrode production and process technology development trend and applications’.

 

Of the transparent conductive materials, oxides have been researched the longest, and they are most widely used transparent conductive materials. Oxide including conductive materials have optical band gap of ≥3.0 eV and therefore has high transmittance and can be flexible. Kim revealed that TCO needs further improvement in conductivity and transmittance for display application.

 

Regarding transparent body, when refractive indexes of components are different, the path of light through the transparent body is refracted. When this occurs, the object becomes hazy although transparent. Haze is quantified and used to assess the transparent body’s performance. Kim explained that for solar cell the haze is purposefully increased to transmit more light to the internal active materials. However, if the display is clouded the clarity of image is reduced and therefore haze has to be lowered. To achieve this, Kim reported that the TCO’s surface roughness has to be reduced.

 

Kim revealed that there are two issues, temperature and flexibility, when TCO is used as transparent electrode. ITO’s conductivity is highest at 300 ℃, and for ZnO it is around 200 ℃. Channel cracks could occur with TCO when higher than bending strain is applied, and the crack could snap when it is bent further, destroying the device performance. Kim explained that to increase the bending strain, the thickness has to be reduced. However, when doing so as the sheet tension increases, the process has to be designed carefully considering the tradeoff.

 

Transparent electrode could be applied to display, solar cell, touch panel, and lighting among others and therefore requires much development. Although oxides have been long researched as transparent electrode materials, Kim concluded that even more diverse value can be created through fusion with next generation materials.

 

그림1

Professor Jang-Ung Park of UNIST Discusses Transparent Electrode’s Present and Future

During the International Advanced Materials & Application Technology Expo (November 25-27), Professor Jang-Ung Park of Ulsan National Institute of Science and Technology (UNIST) gave an in-depth lecture on transparent electrode’s new technology and research results under the presentation title of ‘Technology Trend and Development Direction of High Performance Transparent & Stretchable Electrodes Using Graphene and Ag Nanowire Complex’.

 

Transparent electrode is an electronic component with usually ≥80% transparency, and sheet tension of ≤500Ω/ㅁ of conductivity. This technology is widely used in electronics including LCD front electrode and OLED electrode in display, touchscreen, solar cell, and optoelectronic device.

 

Park explained that the main market for transparent electrode is display and touchscreen, and announced that the transparent electrode market is to grow into US$4,800 million in 2020 from 2015’s US$ 3,400 million.

 

The electrode materials that is mainly being used at present is ITO (indium tin oxide) film produced through evaporation or sputtering. ITO’s merits include good conductivity from the low sheet tension and suitable for mass production. However, China is the main producer of the rare main material, indium, and has a drawback of high processing temperature. As such, research for indium replacement is continuing.

 

Graphene, CNT (carbon nano tube), Ag nanowire, and metal mesh are some of the materials that are in the spotlight as ITO replacement. However, Park emphasized that transparent electrodes that are being developed at present have difficulty in surpassing ITO in terms of electronical and optical properties. Instead, he explained that as the display shape changes, the replacement material can be used for displays where ITO cannot be applied.

 

At present, ITO is being used as the main electrode material for flat display. However, its weakness against mechanical stress and limitation in flexibility led to some views that flexible display application will be difficult. Regarding this Park explained that thickness of substrate is more important than ITO’s traits for display’s curvature radius and therefore if substrate becomes thinner, ITO can be applied even to foldable display as well as flexible. He added that although folding the display is acceptable, stretchable display is impossible as the properties are destroyed when pulled.

 

Park emphasized that in order for the wearable display market, including the smartwatch market, to grow, the comfort of the user is important. He reported as a human body does not conform to a specific curvature radius, to improve the user comfort, stretchable panel that can bend in diverse directions is a necessity. For this to be possible, transparent electrode that can replace ITO is required.

 

For example, watch shaped application can be replaced with stretchable display up to the strap part that wraps around the wrist. Glasses shaped application can have stretchable display for curved areas such as lenses. Also, within textiles industry, research into smart textiles through electronic circuit application is continuing.

 

As the transparent electrode that can replace ITO, Park suggested graphene and Ag nanowire complex. Ag nanowire reduces high sheet tension of graphene, and graphene prevents Ag nanowire’s oxidization, complementing each other. Park revealed that ≥90% transmittance and ≤30Ω/ㅁ was achieved through research. He emphasized as stretchability increased to 100%, it is suitable for stretchable display.

 

According to Park, transparent electrode can be applied to transparent stretchable sensor and transparent TFT as well as display. With confirmation of continued research regarding this issue, Park concluded his presentation.

[IWFPE 2015] What Will Replace ITO?

2015 IWFPE (International Workshop on Flexible & Printable Electronics) was held at Le Win Hotel in Jeonju, South Korea (November 4-6). During the workshop, many OLED display related presentations commented on ITO’s replacement material.

 

Dr. Jennifer Colegrove, CEO of US research company Touch Display Research, discussed hot trends of 2015-2016. Dr. Colegrove included high resolution, transparent display, wearable device, and flexible display in the hot trends. Of these she pointed out ITO replacement material regarding touch panel. She mentioning metal mesh, silver nanowire, CNT, and graphene as materials that could replace ITO. Dr. Colegrove added that the material has to be flexible in order to be applicable to flexible display and needs to have high efficiency.

 

그래핀

 

Hanwha Techwin’s Dr. Seungmin Cho announced that graphene, which has higher uniformity compared to ITO, will be the material of future. With lower resistance than ITO, graphene shows good characteristics, but Dr. Cho explained that high cost and particles produced are issues that need to be solved. He also commented that China selected graphene related national projects and is striving to develop the technology.

 

Dr. Hyunkoo Lee of ETRI (Electronics and Telecommunications Research Institute) presented that the multi-layered graphene that ETRI, Sungkyunkwan University, and KAIST (Korea Advanced Institute of Science and Technology) co-developed will become the material that can replace ITO. He also introduced the results that as the transmittance is particularly high, it is suitable for transparent display, and compared to silver nanowire material in high resolution top emission structure, the display’s brightness is higher.

 

ITO replacement development is an issue for the future of display industry’s progress. It is estimated that research development on graphene as one of the ITO replacement electrodes will be actively carried out.

 

그래핀2